The Borsuk-Ulam Theorem and Bisection of Necklaces

نویسندگان

  • NOGA ALON
  • DOUGLAS B. WEST
چکیده

The Borsuk-Ulam theorem of topology is applied to a problem in discrete mathematics. A bisection of a necklace with k colors of beads is a collection of intervals whose union captures half the beads of each color. Every necklace with fc colors has a bisection formed by at most k cuts. Higherdimensional generalizations are considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splitting Necklaces and a Generalization of the Borsuk-ulam Antipodal Theorem

We prove a very natural generalization of the Borsuk-Ulam antipodal Theorem and deduce from it, in a very straightforward way, the celebrated result of Alon [1] on splitting necklaces. Alon’s result says that t(k− 1) is an upper bound on the number of cutpoints of an opened t-coloured necklace so that the segments we get can be used to partition the set of vertices of the necklace into k subset...

متن کامل

Digital Borsuk-Ulam theorem

The aim of this paper is to compute a simplicial cohomology group of some specific digital images. Then we define ringand algebra structures of a digital cohomology with the cup product. Finally, we prove a special case of the Borsuk-Ulam theorem fordigital images.

متن کامل

A Borsuk-Ulam Equivalent that Directly Implies Sperner's Lemma

We show that Fan’s 1952 lemma on labelled triangulations of the n-sphere with n + 1 labels is equivalent to the Borsuk–Ulam theorem. Moreover, unlike other Borsuk–Ulam equivalents, we show that this lemma directly implies Sperner’s Lemma, so this proof may be regarded as a combinatorial version of the fact that the Borsuk–Ulam theorem implies the Brouwer fixed-point theorem, or that the Lustern...

متن کامل

A definable Borsuk-Ulam type theorem

Let N = (R,+, ·, <, . . . ) be an o-minimal expansion of the standard structure of a real closed field R. A definably compact definable group G is a definable Borsuk-Ulam group if there exists an isovariant definable map f : V → W between representations of G, then dimV − dimV G ≤ dimW − dimW. We prove that if a finite group G satisfies the prime condition, then G is a definable Borsuk-Ulam gro...

متن کامل

Extensions of the Borsuk-Ulam Theorem

Extensions of the Borsuk-Ulam Theorem by Timothy Prescott

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008